Quantum Computing

Christian Schaffner

University of Amsterdam
Informatics Institute (IvI)
Theory of Computer Science (TCS) group

Leve De Wiskunde! 19 April 2024
Quantum Physics
Solvay conference Brussels 1927

Dirac Schrödinger Pauli Heisenberg

Planck Curie Lorentz Einstein Bohr
Quantum Physics

• Niels Bohr:
 “If quantum physics hasn’t profoundly
 shocked you, you haven’t understood it yet.”

• Albert Einstein:
 “God does not play dice.”

• Richard Feynman:
 “I think I can safely say that nobody understands
 quantum physics.”
Quantum Physics

1. Superposition:
 • Of different states

2. Interference:
 • Of states

3. Entanglement:
 • Of two or more physical systems
Quantum Physics

1. Superposition:
 • Of different states

2. Interference:
 • Of states

3. Entanglement:
 • Of two or more physical systems
Superposition

- An object in **different states simultaneously**:
 - A photon can be at **two positions** at the same time
 - Schrödinger’s cat: **dead and alive**

- Experimentally verified:
 - Small systems, such as photons
 - Bigger systems, molecules...

April 2023: Fat quantum cats at **ETH Zurich**: 16 micrograms!
“About your cat Mister Schrödinger...
I’ve got good and bad news.”
Superposition:
An experiment
Quantum Bit: Polarization of a Photon
Qubit: Rectilinear/Computational Basis

|1⟩_+ |0⟩_+ |1⟩_+
Detecting a Qubit

No photons: 0
Measuring a Qubit

Measurement: with prob. 1 yields 1

No photons: 0
Photons: 1
Diagonal Basis

Measurement:
\[\frac{\leftrightarrow + \uparrow}{\sqrt{2}} = \uparrow \]
with prob. ½ yields 0
with prob. ½ yields 1
Video
Measuring Collapses the State

Measurement:

\[
\frac{\left\langle \uparrow \mid \downarrow \right\rangle + \left\langle \downarrow \mid \uparrow \right\rangle}{\sqrt{2}} = \frac{1}{2}
\]

with prob. \(\frac{1}{2} \) yields 0
with prob. \(\frac{1}{2} \) yields 1
Measuring Collapses the State

\[
\begin{align*}
\begin{pmatrix}
\end{align*}
\]

\[
\begin{align*}
\begin{pmatrix}
\end{align*}
\]
Quantum Physics

1. Superposition:
 - Of different states
 - Observation: collapse of the superposition

2. Interference
 - Of an object in superposition

3. Entanglement
 - Of two or more physical systems
no superposition but: beamsplitter reflects 50% and transmits 50%?
Mach-Zehnder interferometer

When you perform the experiment

detector 0

ALWAYS !!!

detector 1

mirror

mirror

When you perform the experiment

DuSoft
Research Center for Quantum Software
According to quantum mechanics, the clicks will always be detected by detector 0.
Quantum Physics

1. Superposition
 • Of different states
 • Observation: collapse of the superposition

2. Interference:
 • Of an object in superposition

3. Entanglement:
 • Of two or more physical systems
Quantum Computers
Quantum Physics + Computer Science = Quantumcomputer

Sources:
- Alan Turing
- Alonzo Church
- Emile Post
- Feynman
- Deutsch
Quantum Bit

- Classical bit: \(0\) or \(1\)
- Quantum bit: superposition of \(0\) and \(1\)
More qubits

- 1 qubit superposition of 2 states
- 2 qubits superposition of 4 states
- 3 qubits superposition of 8 states
- 4 qubits superposition of 16 states
- 5 qubits superposition of 32 states
- 6 qubits superposition of 64 states
- 300 qubits superposition of 2^{300} states
Quantum software: fundamentally different

- Qubit: superposition of 0 and 1
- 300 qubits: astronomical amount of parallel computation
- How to get the answer out??
 - Measuring destroys computation!!
- Quantum Program
 - Use interference to cancel undesired computations
- Does not always work!

Our focus: how can we optimally use the extra power!
Quantum Programming is like Composing

• Music
 - Sound waves interfere
 - Composer creates ‘beautiful’ interference of sound waves

• Quantum Computer
 - Qubits in superposition interfere
 - Quantum programmer ensures useful interference of qubit states
What can you do with it?

- Factor big numbers [Shor]
 - Breaks frequently used cryptography

- Quantum cryptography [Bennett-Brassard-Ekert]
 - Quantum-proof cryptography

- Efficient communication
 - Quantum internet, entanglement etc.

- Simulation of nature
 - Chemistry, material design, new medicines..

- ??????
Progress in Building Qubits

<table>
<thead>
<tr>
<th>More general</th>
<th>More specialized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal Quantum Computer</td>
<td>Quantum Annealer</td>
</tr>
<tr>
<td>Mostly: gate-based</td>
<td></td>
</tr>
<tr>
<td>Fault-tolerant</td>
<td></td>
</tr>
<tr>
<td>Uses error correction</td>
<td>Subject to errors</td>
</tr>
<tr>
<td>Should run any quantum algorithm</td>
<td>Can simulate a certain class of molecules/materials</td>
</tr>
<tr>
<td>Noisy</td>
<td></td>
</tr>
<tr>
<td>Subject to errors</td>
<td></td>
</tr>
<tr>
<td>Runs only short programs</td>
<td></td>
</tr>
</tbody>
</table>

Hardware manufacturers by qubit type:

<table>
<thead>
<tr>
<th>Superconducting</th>
<th>IBM (433 qubits)</th>
<th>Google (72)</th>
<th>Rigetti (80)</th>
<th>D-Wave (5000 qubits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trapped Ions</td>
<td>Quantinuum (32)</td>
<td>IonQ (32)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultracold Atoms</td>
<td>Pasqal (100)</td>
<td>ColdQuanta Atom Computing</td>
<td>QuEra (256 qubits)</td>
<td>Pasqal (196)</td>
</tr>
</tbody>
</table>

Version: Aug 2023
The Future is Quantum

• 2015: Launch research center for quantum software
• 2020: launch network organization
• 2021: 615M€ for 7y for
• 2024/25: start of UvA MSc Quantum Computer Science
• 2027: new UvA quantum building
About the MSc programme

Research-based programme
• Very strong connection with **active research** in QuSoft
 - All lecturers are QuSoft members!
• Much of industry is research based as well

Focus on Theoretical Aspects
• **Not** an engineering programme!
• No practical lab sessions
• Focus on theoretical physics, mathematics, algorithms and programming

Interdisciplinary

Recommended BSc program: BSc mathematics!
Questions?

- Nationale Quantum Cursus: https://quantum-cursus.nl/
- Quantum Quest: https://www.quantum-quest.org/
- The Professional’s guide to Quantum Technology: https://www.quantum.amsterdam/guide-to-quantum/